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a b s t r a c t 

Background and Objective Electrocardiogram (ECG) quality assessment is significant for automatic diag- 

nosis of cardiovascular disease and reducing the massive workload of reviewing continuous ECGs. Hence, 

how to design an appropriate algorithm for objectively evaluating the multi-lead ECG recordings is par- 

ticularly important. Despite the deep learning methods performing well in many fields, as a data-driven 

method, it may not be entirely suitable for ECG analysis due to the difficulty in obtaining sufficient data 

and the low signal-to-noise ratio of ECG recordings. In this study, with the aim of providing an accu- 

rate and automatic ECG quality assessment scheme, we propose an innovative ECG quality assessment 

algorithm based on hand-crafted statistical features and deep-learned spectral features. 

Methods In this paper, a novel approach, combining the deep-learned Stockwell transform (S-Transform) 

spectrogram features and hand-crafted statistical features, is proposed for ECG quality assessment. Firstly, 

a double-input convolutional neural network (CNN) is established. Then, the S-Transform with a novel 

online augmentation scheme is performed on the multi-lead raw ECG signal received from one input 

layer to obtain proper time-frequency representation. After that, the CNN with three convolutional lay- 

ers is employed to extract robust deep-learned features automatically. Simultaneously, the hand-crafted 

statistical features, including lead-fall, baseline drift, and R peak features, are calculated and fed into 

another input layer for feature fusion training. Finally, the deep-learned and hand-crafted features are 

concatenated and further fused by a fully connected layer for quality classification. Furthermore, a log- 

odds analysis scheme combining with a gradient-based method can localize the abnormal zone in time, 

frequency, and spatial domains. 

Results and Conclusion Our proposed method is evaluated on a publicly available database with 10-fold 

cross-validation. The experimental results demonstrate that the proposed assessment algorithm reached 

a mean accuracy of 93.09%, a mean F1-score of 0.8472, and a sensitivity of 0.9767. Moreover, compre- 

hensive experiments indicate that the fusion of CNN features and statistical features has complementary 

advantages and ideal interpretability, achieving end-to-end multi-lead ECG assessment with satisfying 

performance. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

As a non-invasive and inexpensive diagnostic tool, Electrocar- 

iogram (ECG) has been widely applied in diagnosing cardiovas- 

ular disease [1–3] . Traditional ECG analysis requires doctors to 

iagnose and treat patients according to their ECG waveform in- 

ormation. However, the ECG signals recorded by wearable de- 

ices can be significantly contaminated by numerous noises such 
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s electromyographic (EMG) signals and low-voltage signals. It has 

een shown that poor-quality ECGs can cause multiple false alarms 

hat may seriously threaten patient safety [ 4 , 5 ]. Worse yet, some 

oises often have similar morphology and overlapped frequency 

ands with the normal ECG recordings [6] . This makes the tra- 

itional ECG signal quality analysis based on manual observation 

ime-consuming, laborious, and subjective [ 7 , 8 ]. Therefore, an au- 

omatic ECG quality assessment method with high performance is 

ighly in demand for addressing these issues. Simultaneously, with 

he development of 5G technology and health Internet of Things 

echnology, the remote ECG monitoring and diagnosis system have 

https://doi.org/10.1016/j.cmpb.2021.106269
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lso put forward higher performance requirements for the auto- 

atic quality assessment of ECG signals [9] . 

The existing mainstream approaches of ECG quality assessment 

an be approximately concluded into two categories. The first one 

s the traditional machine learning-based methods. For example, Li 

t al. [10] extracted more than ten signal quality metrics such as 

SQI, baseSQI, and pcaSQI, and SVM is utilized to conduct the qual- 

ty assessment; Johannesen [11] demonstrated a rule-based ECG 

uality assessment algorithm by leveraging hand-crafted features 

uch as global high-frequency noise, global low-frequency noise, 

nd average RR interval. The heuristically determined threshold 

s set for assessing the ECG quality. Clifford et al. [12] presented 

 data fusion scheme for determining the acceptability of ECGs 

ollected in noisy ambulatory environments. Six SQIs, including 

SQI, bSQI, fSQI, sSQI, kSQI, and pSQI and five classifiers (i.e., NB, 

VM, MLP, and ANN) were utilized for ECG quality assessment. Jo- 

annesen and Galeotti [13] proposed a two-step threshold algo- 

ithm to realize quality classification, which first rejects ECGs with 

acroscopic errors and subsequently quantifies the noise on a con- 

inuous scale. Recently, Zhang et al. [14] employed the waveform 

eatures, including lead-fall feature, baseline wander feature and 

aseline drift feature, power spectrum feature, and non-linear fea- 

ures for feeding into random forest and support vector machine 

SVM) to classify the ECG quality. For hand-crafted features, each 

eature has a specific physical meaning and corresponds to a spe- 

ific description for ECG signals. However, it is difficult to repre- 

ent ECG signal features from all aspects, even if all hand-crafted 

eatures are integrated. 

Another mainstream approach is deep learning methods. Some 

tudies have shown that time-frequency transformation can reveal 

ime-frequency domain characteristics more comprehensively in 

he particular components of ECGs, such as P-wave, QRS complex, 

nd T-wave [15–17] . The time-frequency representation of the raw 

CG signals can increase the dimensionality. Hence, it is usually 

lassified by the deep learning-based methods, which is proved 

o be more suitable for handling high-dimensionality data such as 

ulti-channel images [ 18 , 19 ]. Zhao et al. [20] adopted the mod-

fied frequency slice wavelet transform (MFSWT) to extract ECG 

eatures into the 2-D time-frequency representation. The trans- 

ormed image-based data was sent into a Convolutional Neural 

etwork (CNN) for subsequent tri-class classification. Huerta et al. 

21] transformed the raw ECG signals into 2-D image-based rep- 

esentation by continuous wavelet transform (CWT), and then the 

re-trained Alexnet is utilized for finetuning. Zhang et al. [22] ap- 

lied the Short-Time Fourier Transform (STFT) to acquire the time- 

requency spectrum of the ECG recordings, and then they were fed 

nto a CNN branch for feature extraction. This feature is integrated 

ith another CNN branch feature for the final decision. Besides, 

hang et al. [23] collected multiple ECG features in terms of spec- 

ral distribution, signal complexity, horizontal and vertical varia- 

ion of waves and sent them into a 7-layer Long Short-Term Mem- 

ry (LSTM) network to better capture the time-related features. 

urthermore, Zhou et al. [24] constructed a 1D-CNN to classify 

ingle-lead ECG signals on two publicly available databases and ob- 

ained a satisfactory performance. However, this method can only 

eal with the single-lead ECGs. Compared with the hand-crafted 

eatures, the deep-learned features describe the ECG recordings 

rom another point of view. Though deep learning approaches and 

ome feature fusion methods were investigated in many fields [25–

7] , the interpretability and the relationship between these fea- 

ures have seldomly been presented. 

S-Transform is another time-frequency analysis method pro- 

osed by Stockwell et al. [28] , which inherits and develops STFT 

nd CWT. It has been widely applied in ECG signal analysis. For ex- 

mple, Ari et al. [29] leveraged the S-Transform for ECG signal en- 

ancement, removing noise components from the time–frequency 
2 
omain represented noisy ECG signal. Zidelmal et al. [30] adopted 

he S-Transform in QRS detection and tested their algorithm with 

he MIT-BIH arrhythmia database (MITDB). In this study, we intro- 

uce the S-Transform combining with CNN for ECG quality assess- 

ent. This is the first attempt to implement ECG quality assess- 

ent by adopting S-Transform analysis to the best of our knowl- 

dge. 

In this paper, the S-Transform spectrogram is calculated for 

ime-frequency image-based representation, and its feature is auto- 

atically extracted by CNN modules. On the other hand, statistical 

eatures (i.e., hand-crafted features), including Lead-fall, Baseline- 

rift, and R peak features, are collected and combined with CNN 

eatures for feature fusion decision. To overcome the limitation of 

he few training samples, a novel online augmentation method is 

roposed to improve the generalization ability of the model sig- 

ificantly. Moreover, we introduce a log-odds analysis method to 

easure the contribution of each type of feature and employ a 

radient-based method to localize the abnormal ECG recordings in 

ime-frequency domain. 

The rest of the paper is organized as follows: Section 2 gives 

 detailed description of the employed database and the proposed 

ethod. Section 3 demonstrates the experimental results and dis- 

usses the significance of our work. Finally, Section 4 concludes the 

dvantages and limitations of the proposed method. 

. Materials and methods 

.1. Materials 

In this paper, the database is from the Physionet/CinC Challenge 

011, recorded at 500 Hz, 16 bit per sample, and 5 μV resolution. 

ach 12-lead ECG recording (leads I–III, aVR, aVL, aVF, V1–V6) was 

0s long and had been bandpass filtered within 0.05–100 Hz. All 

he ECG recordings were manually annotated by 23 volunteers, 

ho identified themselves as 2 cardiologists, 1 (non-cardiologist) 

hysician, 5 ECG analysts, 5 others with some experience reading 

CGs, and 10 volunteers who had never read ECGs previously. Each 

CG recording was randomly presented to volunteers that gave a 

rade of A, B, C, D , and F , which corresponded to numerical val-

es of 0.95, 0.85, 0.75, 0.6, and 0. Most of the volunteers graded a 

ew of the ECGs more than once as a result of the random selec- 

ion process. Then, the average grade value was calculated for each 

CG recordings. The ECG recording with which at least two grade 

alues were available, average value greater than 0.7, and no more 

han one grade annotated as F would be labeled as ‘acceptable’. On 

he other hand, if the average value could not reach 0.7 and at least 

wo grade values were available, it would be labeled as ‘unaccept- 

ble’. Otherwise, the ECG recording would be labeled as ‘indeter- 

inate’ [31] . The labeled ECG recordings are divided into dataset A 

set A, 10 0 0 ECG recordings) and dataset B (set B , 500 ECG record-

ngs), where dataset B serving as a test set is not publicly available. 

his paper adopts the set A (including 773 acceptable ECG signals 

nd 225 unacceptable ECG signals) to evaluate our proposed ECG 

uality assessment algorithm. 

.2. Methods 

.1.1. S-Transform spectrogram 

S-Transform maintains a direct relationship with the Fourier 

ransform, which ensures efficient computing speed. At the same 

ime, it has different resolutions at different frequencies. The Gaus- 

ian window of S-Transform can provide higher time resolution of 

igh frequency and higher frequency resolution of low frequency. 

esides, the frequency of normal ECG signals is relatively low, and 

herefore the S-Transform spectrum is an effective method to char- 

cterize ECG signals. The hyper-parameter p is introduced to con- 
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rol the resolution of the S-Transform. With the increase of p value, 

he Gaussian window width of S transformation increases, result- 

ng in the decrease of frequency domain resolution of high fre- 

uency ECG signal and the increase of time domain resolution of 

ow frequency ECG signal. In this study, the p value is set to 0.3. 

he S-Transform fine-tuned with parameter p is given as follows: 

 ( τ, f ) = 

| f | 
p 
√ 

2 π

∫ + ∞ 

−∞ 

x ( t ) e 
− ( t−τ ) 2 f 2 

2 p 2 e −2 iπ f t dt (1) 

here x ( t ) is the ECG signal to be analyzed; τ and f are observed

ime and frequency respectively; .. represents the time-frequency 

atrix obtained by S-Transform. S-Transform is also known as 

phase orthogonal" CWT. Thus, from the perspective of CWT, S- 

ransform can be written as follows: 

 ( τ, f ) = e −2 π iτ f 
√ 

| f | W ( τ, a ) (2) 

here a represents the scale inversely proportional to frequency, 

nd W ( τ , a ) is the CWT of the signal with a special complex Morlet

avelet satisfying the following equation: 

( t ) = 

1 

p 
√ 

2 π
e 

− t 2 

2 p 2 e −2 iπt (3) 

Finally, the S-Transform spectrogram of ECG signals is used 

o represent the energy distribution of ECG signals in the time- 

requency domain, as shown below: 

 

S ( τ, f ) | 2 = S ( τ, f ) S ∗( τ, f ) (4) 

In this work, the frequency range of the S-Transform spectro- 

ram is selected to be between 1 and 25 Hz, which is based on 

he fact that the main frequency band of the ECG signal (includ- 

ng QRS complex, P wave, and T wave) is concentrated in this 

ange. Compared with the time domain waveform of ECG signal, 

he S-Transform spectrogram of ECG signal can reflect the time- 

requency domain characteristics of ECG signal more precisely so 

s to describe the dynamic change process of ECG signal more in- 

uitively. Therefore, S-Transform is an effective method to evaluate 

he quality of ECG signals. 

Fig. 1 shows the S-Transform spectrogram of acceptable and un- 

cceptable ECG records. It can be seen that the acceptable raw ECG 

aveform is regular, and its corresponding S-Transform spectro- 

ram has many regular ridge-like localized patterns. Though some 

oises exist, they do not affect the identification of the QRS com- 

lex. However, the unacceptable ECG segment is obviously irreg- 

lar. As illustrated in Fig. 1 (b) and (d), the Gaussian noises that 

ccurred in the record may be caused by EMG signals and other 

rtificial interferences, making this ECG recording labeled ‘Unac- 

eptable’. 

.2.2. Statistical feature extraction 

Feature 1: Lead-fall. In the dynamic ECG collection procedure, 

oor electrode contact or lead movement could cause a signal 

aveform that seems like a straight line. In this case, the ECG 

ends to be of unacceptable quality. Hence, the number of contin- 

ous constant voltage in each lead is calculated to describe this 

eature. Fig. 2 demonstrates an example of the lead fall. Let Num n 

enotes the maximum number of the identical continuous value 

n the n th lead. Then, the lead-fall feature vector F l f ∈ R 

1 ×12 can 

e expressed as: 

 l f = [ N u m 1 , N u m 2 , N u m 3 , ..., Nu m 12 ] (5) 

Feature 2: Baseline drift. Baseline drift is one of the main noises 

n online ECG collection. ECG recordings with too severe baseline 

rift cannot be used as a reference for clinical diagnosis. In this 

tudy, we filter the original signal using an 8-order low-pass But- 

erworth filter with a cut-off frequency of 0.01 Hz and then extract 
3 
he maximum value to estimate the extent of baseline drift. An ex- 

mple corresponding to this feature is illustrated in Fig. 3 . Let Bas n 
enotes the maximum value of n th lead over the filtered signal. The 

aseline drift feature F bd ∈ R 

1 ×12 is defined as follows: 

 bd = [ Ba s 1 , Ba s 2 , Ba s 3 , ..., Ba s 12 ] (6) 

Feature 3: R peak features. Since R peak is the symbolic band 

f ECG signal, as presented in Fig. 4 , we adopt the number of ab-

olute values that equal to the maximum as the quality index of R 

eaks. Let Mas n denote the number of absolute values that equal 

o the maximum in n th lead, then the R peak feature F r ∈ R 

1 ×12 can 

e described as: 

 r = [ M a s 1 , M a s 2 , M a s 3 , ..., Ma s 12 ] (7) 

Let F SF ∈ R 

3 ×12 be the total statistical feature matrix: 

 SF = 

[ 

F l f 1 · · · F l f N 

F bd1 · · · F bdN 

F r1 · · · F rN 

] 

(8) 

here N is the number of the lead. 

.2.3. Double-input deep convolutional neural network 

As a kind of popular artificial neural network, convolutional 

eural network has been widely used in image recognition. In this 

aper, a double-input model of convolutional neural network is de- 

igned and its architecture is shown in Fig. 5 . The training process 

f the whole network is described by a pseudo-code flow chart 

see Fig. 6 ). In the network initialization phase, three types of sta- 

istical features are extracted to serve as the input data. In the 

raining stage, the dataset is divided into mini-batch and then fed 

nto the model for subsequent training. For each iteration, we ran- 

omly select 30 0 0 points from each sample with length of 50 0 0

oints, and then down-sample ten times to reduce computational 

urden. After that, the S-Transform is applied to each trail. This 

rocedure can be seen as a certain online augmentation method 

or improving the generalization performance of the model. After 

ransformed ECG data passing through three CNN modules (each 

NN module including a convolution layer, a batch normalization 

ayer, and a maxpooling layer), the obtained feature map is flat- 

ened and connected with corresponding statistical features pre- 

ared in the initialization stage, and then fused through a fully- 

onnected layer, which is connected with softmax layer. The final 

oftmax mapping score is compared with the corresponding input 

abel to calculate the cross-entropy loss value. Finally, the network 

s updated through back propagation and the trained network is 

btained. It is noteworthy that actually, the input length of the 

T branch is 6 s, which is randomly selected in the training stage 

o perform online-augmentation. Hence, in the inference stage, we 

egment the signals with the rectangle windows in 0–6 s,2–8 s,4–

0 s, and then execute the forward propagation three times. Finally, 

hree softmax mapping scores are averagely fused to obtain the fi- 

al label. 

The output softmax score of the proposed double-input CNN 

an represent the probability of a sample belongs to a certain class. 

et X ∈ R 

2340 be the concatenated feature vector, w 1 ∈ R 

2340 and 

 2 ∈ R 

2340 the weights of fully-connected layer for acceptable class 

nd unacceptable class, b 1 and b 2 the corresponding bias term, and 

 1 = w 

� 
1 

X + b 1 the output value of fully-connected layer that corre- 

ponds to the acceptable class. Then the probability P that repre- 

ents a sample belonging to the acceptable class can be expressed 

s follows: 

P = softmax ( z 1 ) 

 

exp ( w 

� 
1 X + b 1 ) 

exp ( w 

� 
1 

X + b 1 ) + exp ( w 

� 
2 

X + b 2 ) 
= 

1 
1+ exp ( �w 

� X +�b ) 

(9) 
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Fig. 1. Example of two ECG recordings and their corresponding S-Transform spectrogram. (a) and (b) depict the acceptable and unacceptable single-lead ECG signals randomly 

selected in the database, and (c) and (d) are their corresponding S-Transform spectrograms. 

Fig. 2. An example of ECG recording consisting of lead fall. The recording values 

between two blue lines are equal to zero due to the lead fall. 

Fig. 3. An example of baseline drift feature extraction. The bold red line is the sig- 

nal filtered by a low-pass filter, and the solid green dot indicates the maximum 

value of the filtered signal. 

w  

o

t  

t

Fig. 4. An example of extracting R peak features. The red circles marked on raw 

ECG signal denote the R peaks. 

a

=

w

s

t

t

t

t

e

t  

t

here �w = w 2 − w 1 and �b = b 2 − b 1 . In statistical analysis,

dds are an expression of relative probabilities which is defined as 

he ratio of the probability of two opposed events. Let C = 12 be

he number of leads, then the odds for acceptable class are given 
4 
s: 

O p = 

P 
1 −P 

= exp 

(
−�w 

� X − �b 
)

= exp 

(
−
(
�w 

� 
h 

X h + �w 

� 
d 

X d 

)
− �b 

)
= exp 

(
−
(

C ∑ 

c=1 

�w 

� 
hc 

X hc + �w 

� 
d 

X d 

)
− �b 

)
 exp ( −�b ) exp 

(
−�w 

� 
d 

X d 

) C ∏ 

c=1 

exp 

(
−�w 

� 
hc 

X hc 

)
(10) 

here X h ∈ R 

36 is the flattened vector of the F SF , X hc ∈ R 

3 the 

tatistical feature vector extracted in c th lead, X d ∈ R 

2304 the flat- 

ened feature map of the last max-pooling layer. w h and w d are 

he learned weights corresponding to X h and X d . According to 

he definition of the odds, we define O hc = exp ( −�w 

� 
hc 

X hc ) as 

he corresponding odds of statistical features in each lead, O d = 

xp ( −�w 

� 
d 

X d ) as the corresponding odds of deep-learned fea- 

ures, and O b = exp ( − �b ) as the corresponding odds of bias

erm, which is a constant value. Then the odds O p can be expressed 
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Fig. 5. The proposed double-input CNN architecture. 

Fig. 6. The pseudocode of model training process. 
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5 
s the product of these sub-odds: 

 p = O b O d ( O h 1 O h 2 · · · O hC ) ︸ ︷︷ ︸ 
O h 

(11) 

nd the corresponding log-odds are as follows: 

n ( O p ) = ln ( O b ) + ln ( O d ) + 

C ∑ 

c=1 

ln ( O hc ) ︸ ︷︷ ︸ 
ln ( O h ) 

(12) 

We can observe that the contribution of each type of feature 

an be simply evaluated by log-odds, and the larger the abso- 

ute log-odds, the more significant the impact on output score. It 

s worth noting that the contribution of statistical features corre- 

ponding to each lead can also be computed. 

The learning rate of the proposed network is 0.0 0 05 and the co- 

fficient of L 2 norm is set to 0.0 0 05. The whole CNN model is up-

ated with Adam optimizer [32] for 500 epochs. In this study, all 

xperiments are carried out in MATLAB 2020a, running in a work- 

tation with a i9-9820 × 3.30 GHz CPU, a NVIDIA GTX 2080 SUPER 

PU and 64 GB memory. 

. Results and discussion 

.1. Performance metrics 

In this study, we calculate Sensitivity, Specificity, Precision, F1- 

core, and Accuracy to comprehensively evaluate the proposed al- 

orithm. Assume positive be the acceptable ECG signal, and nega- 

ive be the unacceptable ECG signal, and let TP, TN, FN, and FP be 

he abbreviation of true positive, true negative, false negative and 
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Table 1 

The ablation study results on five comparative experiments. The highest accuracy of each eval- 

uation index is marked in boldface. 

No. Method Sensitivity Specificity Precision F1-Score Accuracy 

A SF 94.70% 75.56% 93.01% 83.38% 90.38% 

B ST-CNN 96.64% 66.67% 90.88% 76.91% 89.88% 

C AugST-CNN 98.19% 62.67% 90.04% 73.90% 90.18% 

D ST-CNN + SF 95.86% 76.00% 93.21% 83.73% 91.38% 

E AugST-CNN + SF 97.67% 77.33% 93.67% 84.72% 93.09% 

f

f

S

S

P

F

A

3

p

c

n

i

C

t

a

a

t

e  

S

e

t

t

alse positive. Then these evaluation indicators can be expressed as 

ollows: 

ensitivity = Recall = 

TP 

TP + FN 

(13) 

pecificity = 

TN 

TN + FP 

(14) 

recision = 

TP 

TP + FP 

(15) 

1 − score = 

2 × Precision × Recall 

Precision + Recall 
(16) 

ccuracy = 

TP + TN 

(17) 

TP + TN + FN + FP 

Fig. 7. (a)–(e) are the confusion matrices

6 
.2. Ablation study 

Table 1 shows a series of ablation experiments related to the 

roposed method and Fig. 7 illustrates five confusion matrices for 

orresponding experiments. Experiment A establishes a fully con- 

ected neural network and takes the statistical features (SF) as the 

nput. Experiment B and experiment C construct the S-Transform 

NN (ST-CNN) and online augmented ST-CNN (AugST-CNN), respec- 

ively. Experiment D and experiment E adopt the double-input CNN 

rchitecture, which can take advantage of the statistical features 

nd deep-learned features. Similarly, compared with experiment D , 

he online augmentation method is added in experiment E . From 

xperiments A and B / C , we can observe that the Sensitivity of the

T-CNN method outperforms the hand-crafted feature method, and 

xperiment C performs the best Sensitivity at 98.19%. At the same 

ime, the Specificity is not as good as the hand-crafted feature ex- 

raction method. In other words, the ST-CNN method tends to rec- 
 corresponding to experiment A–E. 
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Fig. 8. (a) illustrates an example of ECG recording labeled ‘Acceptable’ and (b) is its corresponding S-Transform spectrogram. 
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gnize more ECG signals as acceptable signals, which has the ad- 

antage of not missing valuable signals in the subsequent process- 

ng stage. From this perspective, the features extracted by CNN au- 

omatically and statistical features are complementary. Comparing 

 / C and D / E experiments, it can be seen that the double-input CNN

ethod, which combines the features extracted by ST-CNN auto- 

atically and statistical features, combines the advantages of the 

wo features and has higher Sensitivity and Specificity. Simultane- 

usly, the comprehensive evaluation indexes, including Precision, 

1-score, and Accuracy, have been improved. In addition, compar- 

ng experiments D and E , the improvement of the generalization 

bility of the model is depicted. It can be seen that the method 

roposed in this paper based on augmented S-Transform convolu- 

ional neural network and statistical feature performed best over- 

ll, with Sensitivity, Specificity, Precision, F1 score, and Accuracy of 

7.67%, 77.33%, 93.67%, 84.72%, and 93.09%, respectively. Compared 

ith the S-Transform time-frequency representation method and 

he hand-crafted feature extraction method, this method improves 

he accuracy by 2.91% and 2.71%, respectively. 

.3. Case study 

Fig. 8 illustrates an example tagged as an acceptable ECG signal 

n the Physionet/CinC Challenge 2011 database. For this multi-lead 

CG segment, the hand-crafted feature extraction method will give 

 wrong classification label. In contrast, the augmented ST-CNN 

ethod gives the correct label (i.e., experiment A is classified in- 

orrectly, but experiment B, C, D , and E are classified correctly). The 

tatistical features concentrate on the maximum value and contin- 

ous identical value, so it is not surprising that the record is clas- 

ified as unacceptable. In contrast, the record can be judged as an 

cceptable signal by augmented ST-CNN method because it has the 

bility to capture the inherent relative amplitude features of the 

ignal. 

The ECG signal in Fig. 9 is labeled as unacceptable. When only 

he ST-CNN is performed, the classification result will be wrong. 

n comparison, the classification result will be correct if statistical 

eatures are added for feature fusion (i.e., experiments B and C are 

isclassified, while experiments A, D , and E are correctly classi- 

ed). It can be inferred that ST-CNN is not very sensitive to the 
7 
ead-fall, and take more attention on the performance of whole 12 

eads. 

.4. Interpretability study 

Double-input CNN architecture has the capability of automati- 

ally fusing multiple features. Eq. (12) proves that given an output 

core, we can obtain the contribution of each type of feature by 

omputing the log-odds. Further, the feasibility of separating the 

tatistical feature contribution of each lead indicates we can spa- 

ially localize the abnormal ECG lead. On the other hand, the rich 

nformation contained in the S-Transform spectrogram promotes us 

o explore the possibility of precisely localizing the abnormal ECG 

ecording in the time-frequency domain. To achieve this aim, we 

mployed the Grad-CAM technique [33] , which exploits the gradi- 

nt of the ‘Acceptable’ softmax score with respect to the last max- 

ooling layer in the ST branch to find which parts of the multi-lead 

CG dominate the output score. Fig. 10 illustrates an interpretabil- 

ty analysis of a sample with an ‘Acceptable’ label. We can observe 

rom the raw ECG signal shown in Fig. 10 (a) that there is an ob-

ious baseline drift noise in the 8th lead at 3rd s. Meanwhile, the 

-Transform spectrogram illustrated in Fig. 10 (c) demonstrates an 

nexpected noise with low frequency at the corresponding region. 

ig. 10 (d) and (f) plot the importance map in the time domain 

nd time-frequency domain. It can be seen that a lower Grad- 

AM score is obtained in the low-frequency region at 3rd s. This 

roves that the Grad-CAM technique is able to precisely localize 

he beginning and end ranges of acceptable and non-acceptable 

ones. In addition, the contribution of each type of feature is de- 

icted in Fig. 10 (e), which shows that the deep-learned feature 

as higher confidence in labeling this sample as ‘Acceptable’ and 

ominates the final output score. Fig. 10 (b) provides the spatial 

ocalization based on log-odds of each lead computed by statisti- 

al features, with results correctly localizing the lead suffered from 

oise. Fig. 11 shows another interpretability analysis example. It 

an be seen from Fig. 11 (a) and (c) that a continuous noise that 

ccurred in the 7th lead makes the sample have an unacceptable 

uality. The importance plots illustrated in Fig. 11 (d) and (f) in- 

icate two noises with high-frequency occurred at approximately 

nd and 3rd s have a significant impact on the final output result. 
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Fig. 9. (a) illustrates an example of ECG recording labeled ‘Unacceptable’ and (b) is its corresponding S-Transform spectrogram. 

Fig. 10. An example of interpretability analysis. (a) and (c) are the raw multi-lead ECG sample labeled ‘Acceptable’ and its corresponding S-Transform spectrogram, respec- 

tively. (b) is the log-odds of each lead computed by corresponding statistical features. (f) is the importance map derived from the Grad-CAM technique, and (d) is its mean 

value calculated by squeezing the frequency dimension. (e) illustrates the log-odds that correspond to statistical feature, deep-learned feature, and output score. 

8 
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Fig. 11. An example of interpretability analysis. (a) and (c) are the raw multi-lead ECG sample labeled ‘Unacceptable’ and its corresponding S-Transform spectrogram, 

respectively. (b) is the log-odds of each lead computed by corresponding statistical features. (f) is the importance map derived from the Grad-CAM technique, and (d) is its 

mean value calculated by squeezing the frequency dimension. (e) illustrates the log-odds that correspond to statistical feature, deep-learned feature, and output score. 

Table 2 

Performance comparison with other methods. 

Authors Method Evaluation Sensitivity Specificity Accuracy 

Liu et al. [34] Integrative signal quality index (ISQI) Rule-based 90.7% 89.8% 90.0% 

Maan et al. [35] Reconstruction Matrix Rule-based 97.0% 75.1% 92.2% 

Johannesen and Galeotti [13] Two-step algorithm Rule-based 95.0% 83.1% 92.3% 

Hayn et al. [36] Four measures Rule-based 96.1% 84.0% 93.4% 

Shahriari et al. [37] Structural Image Similarity Metric 70% for training, 30% for testing 83.9% 77.7% 82.5% 

Zhang et al. [23] LSTM-ECG Not mentioned 97.2% 81.2% 93.5% 

Our work Statistical features and S-transform CNN 10-fold cross- validation 97.7% 77.3% 93.1% 
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mains. 
e can observe from Fig. 11 (b) and (e) that the statistical feature 

ominates the final output score, and the corresponding most un- 

cceptable lead is localized. 

.5. Performance comparison 

The Physionet/CinC Challenge 2011 database employed in this 

aper is also used in many other works. Table 2 lists other meth- 

ds assessed on Physionet/CinC Challenge 2011 database. Liu et al. 

34] proposed an ISQI indicator that considers the straight line, 

uge impulse, Gaussian noise, and detector error, with results 

chieving an accuracy of 90% with a high specificity of 89.8%. Maan 

t al. [35] transformed the ECG to Vectorcardiogram and recon- 

truct it by inverse matrix, obtaining an accuracy of 92.2%. Johan- 

esen and Galeotti [13] fulfilled an accuracy of 92.3% on set A with 

 two-step algorithm, which first rejects ECGs with macroscopic er- 

ors and subsequently quantifies the noise. Hayn et al. [36] intro- 
9 
uced four quality measures, including empty lead and spike de- 

ection, number of lead crossing points, and QRS detection. Their 

ethod accomplished a higher accuracy of 93.4% but lower sensi- 

ivity of 96.1%. Shahriari et al. [37] proposed an image-based ECG 

uality assessment approach based on Structural Similarity Mea- 

ure (SSIM), yielding a cross-validation accuracy of 82.5% on set A . 

hang et al. [23] designed an LSTM network for ECG quality as- 

essment and reported a relatively high accuracy. However, their 

valuation method was not mentioned. Therefore, the performance 

easures, even when higher, are not fully comparable. In this pa- 

er, a novel ECG quality assessment method is proposed, which 

nnovatively combines the hand-crafted statistics and deep-learned 

-Transform spectrogram features and obtains a mean accuracy of 

3.09% with higher sensitivity of 97.7% in 10-fold cross-validation. 

urther, the proposed method has ideal interpretability and can re- 

lize abnormal ECG localization in time, frequency, and spatial do- 
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. Conclusion 

The novelties of this paper can be concluded in the following 

spects. We explore the performance of deep-learned S-Transform 

pectrogram features and introduce a novel online augmentation 

cheme for the first time, which can achieve higher sensitivity 

nd generalization ability in evaluating ECG quality. Simultane- 

usly, by fusing statistical features with deep-learned features us- 

ng a double-input CNN architecture, we obtain a noticeable im- 

rovement in classification results. Through the case study, we also 

onfirm that the two-type features are complementarity. Further- 

ore, the comprehensive interpretability analysis proves that our 

ethod can effectively localize the abnormal ECG recording in the 

ime, frequency, and spatial domains. 

Though the effectiveness of our proposed method has been 

roved, some limitations should be revealed. Firstly, the scale of 

he currently used database is relatively small. In the following 

tudy, more labeled data collected in challenging conditions should 

e further expanded to verify the generalization ability of the pro- 

osed method. Secondly, the structure of the adopted CNN and uti- 

ized statistical features is not fully optimized, and more novel net- 

ork structures and statistical features should be evaluated to fur- 

her improve the classification results in future work. 
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